data viz bias cognitivi
Questi bias sono particolarmente rilevanti nella data visualization, aumentarne la consapevolezza può aiutarci a migliorare i nostri progetti data-driven
Il magazine di dataninja ha tradotto l'articolo che Lydia Hooper ha scritto per Nightingale.
Le nostre vite sono afflitte dall’incertezza. Facciamo affidamento sul design per riuscire a orientarci. Quando i progetti incorporano dati, possono suggerirci le informazioni di cui potremmo aver bisogno.
I progetti data-driven vengono utilizzati al meglio quando il contesto richiede alcune importanti decisioni e quando sono disponibili dati per l’orientamento. Ad esempio, in questo momento, il mondo è inondato di grafici destinati a spiegare la pandemia, in parte in modo da poter comprendere meglio i rischi e prendere decisioni di conseguenza.
Che ne siano consapevoli o meno, i designer spesso affrontano tali problemi con una serie di euristiche. Queste sono regole, principi generali o scorciatoie mentali che ci aiutano a prendere alcune decisioni rapide, come usare un linguaggio coerente e rendere leggibili i caratteri tipografici.
Le euristiche hanno lo scopo di aiutare nella risoluzione dei problemi, ma possono anche presentare una nuova serie di effetti indesiderati. Negli anni ’70 e ’80 gli psicologi Amos Tversky e Daniel Kahneman hanno gettato le basi per gli studi sulle euristiche e sui bias cognitivi (anche detti pregiudizi).
leggi l'articolo completo su dataninja magazine
Your page content goes here.